REVIEWING THE AUSTRALIAN NATIONAL RESERVE SYSTEM

Janet Stein

Centre for Resource and Environmental Studies, Australian National University

ACKNOWLEDGEMENTS

- This work was supported by an Australian Postgraduate Award and a CSIRO Division of Land and Water Postgraduate Scholarship
- Supervisors: Michael Hutchinson, Henry Nix
- DEM development: John Stein

OUTLINE OF TALK

- 1. The National Reserve System (NRS)
- 2. A review of the NRS for freshwater biodiversity conservation
 - Information needs / realities
 - Results
- 3. Issues for future reviews
 - Reducing uncertainty
 - Choosing biodiversity surrogates
 - Measuring adequacy
- 4. Conclusions

THE AUSTRALIAN NATIONAL RESERVE SYSTEM (NRS)

 Protected area systems of the states and territories developed independently

NRS program established in 1992 "to assist with the establishment of a comprehensive, adequate and representative system of protected areas to conserve Australia's native biodiversity"

(NRS Guidelines, 1999

IBRA (Interim Biogeographic Regionalisation for Australia)

IBRA regions with sub-regional boundaries

- Planning framework for the NRS
 - 85 regions, 354 sub-regions (version 5)
- Regions variably derived using climate, landform, geology, vegetation and faunal distributions
- NRS Goal: 80% of extant (sub-) regions to be represented by 2015
- Terrestrial ecosystems focus
 - Biogeographic constraints for obligate freshwater taxa (e.g. drainage divides) not recognized

REVIEWING THE NRS FOR FRESHWATER BIODIVERSITY CONSERVATION INFORMATION NEEDS

Comprehensiveness and representativeness:

 description and mapping of all elements of freshwater biodiversity (at all levels) and where it occurs (in both space and time)

Adequacy:

- knowledge of how much and where it must be protected to ensure long term persistence
 - patterns of connectivity and linkages with the surrounding landscape
 - spatial surrogates for critical processes (hydrological, geomorphological, ecological and evolutionary)
 - threatening processes

REVIEWING THE NRS FOR FRESHWATER BIODIVERSITY CONSERVATION INFORMATION REALITIES

- Mapping of freshwater environments, their contributing areas (surface and groundwater) and patterns of connectivity is incomplete
 - review focussed on rivers and streams
 - a new national stream and nested catchment reference system maps rivers and streams, their contributing areas (surface drainage) and patterns of connectivity

REVIEWING THE NRS FOR FRESHWATER BIODIVERSITY CONSERVATION ASSESSING COMPREHENSIVENESS

- No complete, national inventory of freshwater biota
 - surveys focus on bio-assessment needs (fish, macroinvertebrates)
 - most often in disturbed streams
- River ecosystems delineated continent-wide by classifying and mapping River Environment Types
 - attributes describing key landscape factors that drive river ecosystem patterns and processes
 - compared 2 classification approaches

RIVER ENVIRONMENT TYPES 1

Hierarchically combined 10 group classifications of stream segments

Level 1: Climate (10) (Annual means and extremes of rainfall and temperature, radiation, rainfall erosivity, growth index)

Level 3: Geology (420)

(nutrient supply potential, alkalinity, grainsize, hardness)

Level 4: Topography (2361)

(catchment shape and area, landscape position, valley confinement, slope, relief ratio)

Level 5: Vegetation class (8614)

RIVER ENVIRONMENT TYPES 2 Single combined classification

River Environment Types 2 with major drainage divides.

Types were defined by numerical clustering of stream segments using all landscape attributes combined. Colours are indicative of the similarity between groups.

REVIEWING THE NRS FOR FRESHWATER BIODIVERSITY CONSERVATION MEASURING ADEQUACY

- Little is known of the requirements for long term persistence of most Australian freshwater biota
 - Adequacy measured with simple percentage targets, adjusted for natural rarity and vulnerability (Pressey and Taffs, 2001) and the degree of replication
 - Threatening processes indicated by indices that characterise the intensity and extent of human activities at both local and catchment scales (Stein et al. 2002)
 - River Disturbance Index (RDI) indicates overall disturbance (instream and catchment) - RDI threshold indicates extant River Environment Types

RESULTS PROTECTED STREAMS AND BASINS

- 190,000 (6.7%) of 2.8M
 km of stream in an IUCN I
 to IV protected area
 - Nearly half of this length potentially threatened by major instream barriers and/or has unprotected headwater sections
 - Entire river systems rarely protected - only 4 basins with area > 500km² protected from source to outlet

RESULTS: COMPREHENSIVENESS RIVER ENVIRONMENT TYPES

Many of the hierarchically defined types represented poorly or not at all – more so at finer levels of partitioning

Few types > 15% of stream
 length protected

 Types from the combined classification are relatively better represented – but these are also more heterogeneous

RESULTS: COMPREHENSIVENESS RARE AND THREATENED ECOSYSTEMS

Status assigned using NRS

criteria developed for forest types

Numbers of rare, threatened and endangered types represented within an IUCN class I to IV protected area

	1000	in the state	cificina developed for forest types
	Level 5	Combined	 Rare: occupies area < 1000ha total sub-catchment area of type large proportion of Level 5 types Threatened: < 30% original extent River Disturbance Index (RDI) threshold used to identify extant examples of River Environment
Rare	1585 (6934)	8 (14)	
Threatened	17 (51)	5 (5)	
Endangered	30 (116)	6 (6)	Types • Endangered: < 10% original
	1994 - W	Contraction of the second	extent

RESULTS: ADEQUACY PROGRESS TOWARDS CONSERVATION TARGETS

RESULTS: ADEQUACY REPLICATION OF RIVER ENVIRONMENT TYPES

Types protected in more than one drainage basin

Number of types	Level 5	Combined
Represented in NRS at least once	3242	349
Occurs in > 1 drainage basin	2843	345
Represented in NRS from > 1 drainage basin	1745	330
Total	8614	355

ISSUES FOR FUTURE REVIEWS 1: REDUCING UNCERTAINTY

- Spatial data uncertainty
 - compromises on data quality and consistency to achieve continental coverage
 - variety of map scales (1:100,000 to 1:2,500,000)
 - errors and artefacts e.g. spurious River Environment Types?
- Applicability of NRS rare and threatened criteria originally developed for forest types?
- Classifying River Environment Types
 - effect of classification method and numbers of types on outcomes
 - characterizing landscape processes
 - e.g. attributing the influence of catchment geology (dominant or areal proportions of mapping units or process models?)

ISSUES FOR FUTURE REVIEWS 2: CHOOSING BIODIVERSITY SURROGATES

- Surrogacy value of River Environment Types
 - significant differences in community composition (fish, macroinvertebrates)
 - variability among types
- Biogeographic regionalisation(s) to represent influence of past barriers, glaciations etc.
 - for different functional groupings of taxa eg reflecting variable dispersal capabilities?
- Employing multiple biodiversity surrogates?
 - e.g. freshwater conservation planning project in Tasmania used geomorphic types, hydrological regions, modelled distributions biological assemblages

ISSUES FOR FUTURE REVIEWS 3: MEASURING ADEQUACY

- Moving beyond single, arbitrary percentage targets
 - information needs prohibitive?
- Targets based solely on requirements for persistence?
 - vulnerability to assist in prioritizing conservation actions
- Measuring the adequacy of protection for ecological processes?

CONCLUSIONS

